
ANT-1D

The Alicante Nano Transport program

David Jacob
MPI für Mikrostrukturphysik

Weinberg 2, 06108 Halle, GERMANY

Email: djacob@mpi-halle.de

August 6, 2010

1 Introduction

ANT-1D is a program for calculating the transport properties of nanosys-
tems starting from the (effective) one-body Hamiltonian of the system rep-
resentd in a tight-biding form or in some local basis set. The transport
properties are computed in the framework of the Landauer formalism in con-
nection with the one-body Green’s function method. The electrodes are quasi
one-dimensional nanowires with a finite cross section.

2 Method

A detailed account of the methodology can be found elsewhere, for example
in Refs. [1, 2, 3, 4, 5, 6], and references therein.

3 Functionality

Basic functionality:

• Calculation of Landauer transmission function

• Calculation of DOS and projected DOS

• Population analysis

1



• Determination of Charge and Fermi level

• Interface with CRYSTAL06 ab initio electronic structure code

Advanced functionality for treating strong electronic correlations: [5]

• Calculation of hybridization functions to calculate electronic self-energy
of strongly interacting electrons with impurity solvers

• Correlated transmission function

• Correlated DOS and PDOS

• Correlated charge and density matrix

4 Installation

The program is written in standard FORTRAN90. Compilation should thus
be straight forward in principle. So far the program has been tested on Linux
PCs (both AMD and INTEL) with the Portland Group Fortran compiler
(pgf90) and the INTEL FORTRAN compiler (ifort).

To compile the ANT-1D code, go to the subdirectory src and edit the
Makefile: You have to set the variable F90 to the FORTRAN90 compiler
you want to use to compile the program. In the variable EXTRALIBS ad-
ditional libraries that have to be linked to generate the executable, have to
be specified together with the path where the compiler can find them. The
only external libraries needed are the BLAS/LAPACK libraries. But some
compilers (like ifort) need additional libraries to link these libraries. Please
see the documentation of your compiler package.

The ANT-1D code has been parallized with MPI. In order to compile
with MPI, the -DHAVE MPI flag has to be activated in the Makefile. Fur-
thermore the flag F90 has to be set to mpif90. The parallel code has been
succesfully tested with openmpi and mpich.

5 Running ANT

ANT-1D takes input from a single input file. The input file must have the
extension .ant. When invoking Alitrans the input file (<input>.ant) has to
be specified as a command line parameter without the extenison:

ant2010 <input>

2



or in order to redirect the output to a file.

ant2010 <input> >& <output>

If ANT-1D has been compiled with MPI (see above), then one can run
the code in parallel with the following command:

mpirun -np <N> ant2010 <input>

or redirecting the output:

mpirun -np <N> ant2010 <input> >& <output>

where <N> is the number of proecessors to be used.

5.1 Input files

Normally, five input files are necessary to run ANT:

1. the main input file (extension .ant) contains the definitions of various
parameters and specifies the names of the other input files;

2. the device input file (extension .dev) defines some parameters specific
to the device part and most importantly the device Hamiltonian and
overlap matrix;

3. the device geometry file (extension .xyz) specifies the atomic geometry
of the device

4. the two electrode input files (extension .elc) define parameters spe-
cific to the electrode parts and the electrode Hamiltonian and overlap
matrix;

Each file consists of one or several input sections in the FORTRAN90
Namelist format. A namelist specification starts with an ampersand and the
name of the Namelist. The namelist specification is ended with “/”. Values
to the namelist parameters can be assigned by equating the parameter’s name
to an allowed value. Parameters within the namelist can be specified in any

3



order, and even repeatedly. If parameters are specified repeatedly, the pa-
rameter holds the value of the last assignment. Specification of any namelist
parameter is optional, i.e. the namelist can be empty. The parameters then
hold default values. However, the namelist must be specified even if it is
empty. The parameter list can be commented by using the usual Fortran90
comments, e.g. the exclamation mark “!”. The following example illustrates
the specification of some parameters in the general parameters section of the
main input file:

&Parameters ! Begin of namelist ‘‘Parameters’’

Lead1File = lead1.elc ! Input file for lead #1

Lead2File = lead2.elc ! Input file for lead #2

DevFile = device.dev ! Input file for device

Transm = .true. ! Compute Transmission and DOS

AtomDOS = 30, 31 ! Compute PDOS projected on orbtials

! of atoms #30 and #31

FindEFD = 2 ! Search for device Fermi level using

! Muller method

Pop = 1 ! Mulliken population analysis

L1DMaxCyc = 10 ! Maximum number of cycles in self-consistent

! solution of Dyson equation for calculating

! lead self-energies

Gamma = 1.0d-3 ! Broadening on real energy axis for computing

! Transmission and DOS

ChargeAcc = 1.0d-2 ! Accuracy for computing charge

FermiAcc = 1.0d-2 ! Accuracy for Fermi level search

/ ! End of namelist ‘‘Parameters’’

Note, that by the FORTRAN90/95 standard the input is not case sensi-
tive. For furhter details of the namelist construct, see the FORTRAN90/95
documentation.

Additionally, other important and mandatory parameters like the Ham-
litonians and overlap matrices of device and leads are specified outside the
namelist constructs in a special format. In the following we explain the input
format, and give a complete list of the parameters that can be specified in
each of the input files.

5.2 Main input file

The main input file can have any name but it must end with the extension
.ant. It contains the mandatory Parameters section which specifies various
general parameters. Additionaly, a number of AtomData namelists must be

4



specified depending on the value of the variable NAtomData in the Parameters
namelist. Below we list the names of the variables that can be altered within
the Parameters namelist, together with the default value (in parenthesis),
and a short explanation of the variable’s function.

General parameters

ChargeAcc (Real, default: 1.0E-03):
Absolute accuracy when calulating the charge, e.g. the number of electrons
(of device or leads) by integrating Greens functions.

FermiAcc (Real, default: 1.0E-03):
Absolute accuracy when calculating Fermi level (of device or leads) using
FindEFL or FindEFD options.

eta (Real, default: 1.0E-10):
Infinitesimal imaginary part added to real energy when calculating the Greens
function on the real axis.

Gamma (Real, default: 1.0E-03):
Additioanl imaginary part added to real energy when calulating the electrode
self-energies on the real axis in order to achieve a smoother surface DOS of
the electrodes.

infty (Real, default: 100):
This parameter determines the low energy cutoff (=-infty) for the charge
integration.

L1DMaxCyc (Integer, default: 1000):
Maximum number of cycles in self-consistent solution of Dyson equation for
lead self energies.

L1DConv (Real, default: 1.0E-006):
Convergence criterion for self-consistent solution of Dyson equation of lead
self energies.

L1Dalpha (Real, default: 0.5):
Mixing of self-energies in self-consistent solution of Dyson equation for lead
self energies.

NAtomData (Integer, default: 0):
Number of atomic data input blocks. See below.

5



Functionality parameters

FindEFL (Integer, default: 0):
Whether to search for the Fermi levels of the leads.

FindEFD (Integer, default: 0):
Whether to search for the Fermi level of the device. 0: Do not search for
Fermi level; 1: Use Bisection method; 2: Use Müller method; 3: Use Secant
method.

DeltaEF (Real, default: 0.5):
Defines the initial energy window (EF-DeltaEF, EF+DeltaEF) for Fermi
level search. Note that for the Bisection method (FindEFD=1) the energy
must lie within these boundaries.

PrintHS (Logical, default: .false.):
Print out Hamiltonian and overlap matrices.

ShrDev (Logical, default: .false.):
Shrinks central device region by one lead unit cell on each side of the device.

ExtDev (Logical, default: .false.):
Extends central device region by one lead unit cell on each side of the device.

E1 (Real, default: -5.0):
Lower bound of energy window for output of transmission and DOS.

E2 (Real, default: 5.0):
Upper bound of energy window for output of transmission and DOS.

NPoints (Integer, default: 1000):
Number of energy points for which to calculate transmission and DOS.

Pop (Integer, default: 0):
Whether to perform a population analysis of the device region. The popula-
tion of each atom in the central device region is printed out. 0: No population
analysis; 1: Mulliken population analysis; 2: Löwdin population analysis; 3:
Direct population analysis (not taking into account overlap between atomic
orbitals).

AtomPop (Integer array, default: 1000*0):
For which atoms to perform a more detailed population analysis resolved in
individual atomic orbitals. Assign an integer array of all possible atoms to
AtomPop.

6



Transm (Logical, default: .false.):
Whether to calculate the transmission, DOS, and local DOS.

AtomDOS (Integer array, default: 1000*0):
For which atoms to calculate a local DOS, e.g. resolved for individual atomic
orbitals.

AODOS (Integer array, default: 1000*0):
Specify individual atomic orbitals for which to calculate local DOS.

NChannels (Integer, default: 0):
Print out transmissions of eigen channels.

LeadDOS (Logical, default: .false.):
Whether to print out the DOS of the bulk leads.

Parameters determining input file names:

DevFile (Character string, default: device.dev):
Specify file name of device input file.

Lead1File (Character string, default: lead1.elc):
Specify file name of left (1) lead input file.

Lead2File (Character string, default: lead2.elc):
Specify file name of right (2) lead input file.

DevXYZ (Character string, default: device.xyz):
Specify file name of device geometry input file.

Lead1XYZ (Character string, default: lead1.xyz):
Specify file name of geometry input file for lead no. 1.

Lead2XYZ (Character string, default: lead2.xyz):
Specify file name of geometry input file for lead no. 2.

Parameters for Electron Correlations:

NCorrBl (Integer, default: 0):
Specifies the number of correlated blocks in the device region. Each corre-
lated block can consist of several consequitve orbitals.

CorrBl Array(1:100) of type TCorrBlock:
Each array element specifies the parameters for each of the correlated blocks
in the device region.

7



TCorrBlock elements:

%beg (Integer, default: 0):
Number of 1st orbital of correlated block

%end (Integer, default: 0):
Number of last orbital of correlated block

%U (Real, default: 0.0):
On-site Coulomb repulsion (only used for double-counting correction)

%J (Real, default: 0.0):
Hund’s rule coupling (only used for double-counting correction)

%nu (Real, default: 0.0):
Total occupation of spin-up orbitals in correlated block (only used for double-
counting correction)

%nd (Real, default: 0.0):
Total occupation of spin-down orbitals in correlated block (only used for
double-counting correction)

Correlated (Logical, default: .false.):
If activated all calculations are performed taking into account electronic
correlations described by a dynamic self-energy for all correlated orbitals.
For each correlated block (see. CorrBl above) the self-energies are read
from a single file sig.inp.<iblock> where <iblock> is the number (=1 -

<NCorrBl>) of the corresponding correlated block. For each orbital within
the correlated block, two columns corresponding to the real and the imagi-
nary part of the self-energy have to be specified.

HybFunc (Logical, default: .false.):
This option allows to calculate the hybridization function for each of the
correlated blocks defined by the parameters NCorrBl and CorrBl. The hy-
bridization function is one of the important quantities that define the An-
derson impurity problem, and hence is a necessary input for the impurity
solver. If the option Correlated has been activated the energy mesh on
which to calculate the hybridization function is defined by the energy mesh
of the self-energy input files sig.inp.<iblock>. Otherwise the mesh has to
be defined in an additional file mesh.dat.

DiagCorrBl (Logical, default: .false.):
If this option is activated the single-particle Hamiltonian of the correlated
block is diagonalized (and previously orthogonalized). This is useful when the
strongly interacting electrons are described by more than one set of orbtials.

8



For example in a certain basis set, the strongly interacting 3d-electrons could
be described within the ab initio calculation by more than one set of d-
orbitals. The diagonalization then effectively contracts the d-shells into a
single low-energy d-shell which si then correlated.

SymmCorrBl (Logical, default: .false.):
This option averages the on-site energies of the orbitals within a correlated
block. This can be useful if the ab initio calculatuion has broken the sym-
metry of the correlated states too strongly.

AtomData input blocks

Additionaly, atomic data input blocks must be specified when NAtomData

> 0. The atomic data input blocks contain information about the atomic
types (identified by their atomic number) used in the calculations. There
must be as many atomic data input blocks as specified by the parameter
NAtomData in the Parameters namelist. The individual atomic data blocks
are again Fortran90 namelist format, and the namelist name is AtomData.
If no atomic data is specified (NAtomData = 0) some of the above options
of Parameters namelist which require atomic information (e.g. AtomPop,

AtomDOS cannot be used.
At the moment there are only two variables that can be modified in each

atom data block:

AN (Integer, default 0):
Atomic number of atom type.

AtShells (Character array):
Array of characters specifying atomic shells of atom: s,p,d,f.

Example of main input file:

&Parameters

Lead1File = lead1.elc

Lead2File = lead2.elc

DevFile = device.dev

FindEFD = 0

DeltaEF = 0.1

Pop = 1

AtomPop = 30, 31

Transm = .true.

AtomDOS = 30, 31

Shrdev = .true.

9



L1DMaxCyc = 10

Gamma = 1.0d-3

ChargeAcc = 0.001

FermiAcc = 0.001

NAtomData = 2

/

&AtomData

AN = 227

AtShells = s p d

/

&AtomData

AN = 229

AtShells = s p d

/

5.3 Device input file

The device input file should have the extension .dev, It contains the defi-
nition of the device Hamiltonian and overlap matrices, and the specification
of some parameters. The device parameters are specified in the namelist
DevParam at the beginning of the device input file:

&DevParams

NDSpin = <integer> ! spin-degenerate (=1,default) or spin-polarized (=2)

NDAO = <integer> ! Number of atomic orbitals in device region

NDEl = <integer> ! Number of electrons in device region

EFermi = <real> ! Fermi level (default = 0.0)

sparse = <logical> ! whether to read Hamiltonian and overlap matrices

! as sparse matrices (=.true.), or not (=.false.,default)

/

Subsequently, the Hamiltonian matrix and the overlap matrix of the de-
vice region are specified. In the case of a spin-polarized calculation (NDSpin=2)
a Hamiltonian matrix for each spin has to be specified. For non-sparse mode
(sparse=.false.), the whole matrix has to be specified line by line. For the
case of 3 orbitals and spin-degenerate calculation we would have for example:

! Hamiltonian

0.0 -1.0 0.0

-1.0 0.0 -1.0

10



0.0 -1.0 0.0

! Overlap

1.0 0.1 0.0

0.1 1.0 0.1

0.0 0.1 1.0

Note that lines starting with an exclamation mark are comment lines and
are ignored. In the case of an orthogonal basis set (i.e. the overlap matrix is
the matrix identity), one does not have to specify the overlap matrix if the
keyword OrthogonalBS in the general Parameters namelist is set .true.

For sparse-matrix mode (sparse=.true.) only the non-zero matrix ele-
ments have to be specified. The non-zero matrix elements are specified by
the matrix indices i,j and the corrsponding matrix elements Aij . The end of
the sparse matrix input is marked by the key 0 0 0.0. The above example
in sparse-matrix mode would look like:

! Hamiltonian

1 2 -1.0

2 1 -1.0

2 3 -1.0

3 2 -1.0

0 0 0.0

! Overlap

1 1 1.0

2 2 1.0

3 3 1.0

1 2 0.1

2 1 0.1

2 3 0.1

3 2 0.1

0 0 0.0

5.4 Electrode input file

The electrode input file(s) (extension .elc) are very similar to the device
input file described in the previous section. At the beginning of the input
files one has to specify certain parameters inside the LeadParams Namelist:

&LeadParams

NSpin = <integer> ! 1 = spin-degenerate, 2 = spin-polarized

11



NPC = <integer> ! Order of neighbour hoppings between

! primitive cells to be taken into account

NPCAO = <integer> ! Number of atomic orbitals in primitive cell

NPCEL = <integer> ! Number of electrons in primotive cell

EFermi = <real> ! Fermi level of electrodes

sparse = <logical> ! whether to read Hamiltonian and overlap

! matrices as sparse

/

Next, the Hamiltonian and overlap matrices within the primitive cells
and between primitive cells have to be specified. The variable NPC specified
in the above LeadParams Namelist gives the number of inter-cell hoppings
and overlaps to be taken into account, i.e. for NPC=1 only nearest neighbour
hoppings and overlaps are taken into account, for NPC=2 also next-nearest
neighbour hoppings and overlaps are taken into account. Note that each
primitive cell in the electrodes can contain more than one atom.

As in the Device input file, first the Hamiltonians have to be specified,
then the overlap matrices. In the case of an orthogonal basis set (i.e. the
overlap matrix is the matrix identity), one does not have to specify the over-
lap matrix if the keyword OrthogonalBS in the general Parameters namelist
is set .true.

For the case of 1 orbital in the primitive cell, nearest-neighbour hopping
(NPC=1) and a spin-degenerate calculation we would have for example:

! v0 (intra-cell Hamiltonian)

0.0

! v1 (nearest neighbour interaction)

-1.0

! s0 (intra-cell Overlap)

1.0

! s1 (nearest neighbour Overlap)

0.1

If the sparse switch has been set, each matrix has to be specified in the
sparse matrix format as explained in the section above for device input.

5.5 Device and electrode geometry files

In the Device and Electrodes geometry files the atomic geometries of the
device region and the electrode primitive cells can be specified. The format

12



is the usual xyz-file format:

<NAtoms>

<AN1> <x1> <y1> <z1>

<AN2> <x2> <y2> <z2>

: : : :

: : : :

<ANN> <xN> <yN> <zN>

<AN1>, <AN2>... <ANN> refer to the atomic numbers of the 1st, 2nd,
and n-th atom. <x1> <y1> <z1> are the coordinates of the 1st atom, and so
on. The atomic number there must be a corresponding AtomData Namelist
in the main input data file.

Note that the geometry does not have to be specified. In that case on
can simply set <NAtoms> to zero in the geometry file. However, in that case
it is not possible to use some of the options of the Parameters Namelist in
the main input file requiring informations about the atoms, as for example
AtomDOS, AtomPop etc.

5.6 Output files

General information during the processing of the input files and the calcula-
tion is written to the standard output and can be redirected to a file via the
> operator. On the other hand data is written to special output files.

Transmission data file

The transmission data file <file>.transm.dat contains the calculated trans-
mission function as a function of energy if a calculation of the transmission
has been requested in the main input file. The first column contains the
energy E while the second column contains the corresponding transmission
function T (E). In the case of a spin-polarized calculation (NDSpin=2), the
second column contains the transmission for the spin-up channel T↑(E) and
the third column contains the transmission for the spin-down channel T↓(E).
Note that the transmission is always understood as a transmission per spin-
channel. Hence in the case of a not spin-polarized calculation (NDSpin=1)
the total transmission is given by 2 × T (E), and accordingly the conduc-
tance is 2e2

h
× T (E). In the spin-polarized case on the other hand, the total

conductance is e
h
×(T↑(E)+T↓(E)). If eigenchannel are to be calculated (key-

word NChannels) the following columns contain the individual eigenchannel

13



transmissions in descending order. For spin-polarized case, first all spin-up
eigenchannels, then all spin-down eigenchannels are printed out.

DOS data file

This file (<file>.dos.dat) is always written when a transmission calculation
is requested. It contains the total density of states (DOS) of the device region
and (if requested) the projected DOS for all the atomic orbitals of the atoms
specified by the AtomDOS array. The format is similar to the transmission data
file: The first column contains the energy E, and the second column contains
the corresponding total DOS of the device region ρD(E). For a spin-polarized
calculation, the spin-resolved total DOS of the device region is written into
the second (spin-up) and third (spin-down) column. The following columns
contain the projected DOS of each atomic orbital as specified by the AtomDOS
array. The order is the following: First, all the atomic orbitals of the first
atom specified by the AtomDOS array are printed out, then all the atomic
orbitals of the second atom and so forth. For the spin-polarized case, first
all projected DOS for spin-up, and then all projected DOS for spin-down are
printed.

5.7 Interface to CRYSTAL: cry2ant

With the cry2ant interface one can generate ANT-1D input from the out-
put of a converged CRYSTAL06 electronic structure calculatuion of a 1D-
system (keyword POLYMER in CRYSTAL). In order to do so CRYSTAL must
have written the Kohn-Sham Hamiltonian and overlap matrices to the CRYS-
TAL output file (<file>.out). This is achieved by putting the directive
PRINT at the end of the basis set input section in the CRYSTAL input file
(<file>.d12) and specifying the following lines in the CRYSTAL properties
input file (<file>.d3):

BASISSET

2

60 <n>

64 <n>

END

where the <n> stands for an integer number. It specifies the number of near-
est neighbour interactions to write to the output file: For n = 1 only the
intra unit-cell Hamiltonian is written to the output. this is enough when
only device input is generated from the output. If input for the leads is to

14



be generated, one has to output at least the interactions with the two neigh-
bouring cells, i.e. n = 3. For output of next-nearest neighbour interactions
take n = 5, and so on (i.e. n alwasy has to be uneven).

Once you have the CRYSTAL06 output files with the Kohn-Sham Hamil-
tonian and overlap matrices, you have to run the interface program cry2ant

in the shell. The command line is:

cry2ali <CRYSTAL output> [options]

The first (mandatory) input parameter is the the CRYSTAL output file. By
default (i.e. without further specifications of options) it will generate lead
input files taking as many inter-cell hoppings as found in the CRYSTAL
output.

The following options can be specified to control the generation of ANT-

1D input files:

1. -r : Reorder Atoms

This options reorders the atoms within the unit-cell according to their
coordinates. The use of this option is almost always necessary in order
to connect the device region correctly with the leads when running the
ANT-1D program.

2. -z : Rotate to z-axis

The crystal code aligns one-dimensional systems with the x-axis. How-
ever, it is often more convenient to align the transport direction with
the z-direction. This option rotates the coordinate system so that the
transport direction is along the z-axis.

3. -d : Generate device input

This option must be used if device input files are to be generated.

4. -npc <N> : Take up to N-th nearest neighbour hoppings

Only active for generation of lead input files. This option restricts the
number of nearest neighbour hoppings to N .

5. -cut <N1> <N2> : Cut out device from CRYSTAL unit cell Only
acitve for generation of device input file. This option allows to cut out
a smaller region from the CRYSTAL unit cell. N1 and N2 are positive
integers specifying the first atom and the last atom of the unit cell that
are taken as the device region.

15



6 Examples

In the ’examples’ subdirectory a number of simple examples can be found
that illustrate the functionality of ANT-1D.

References

[1] J. J. Palacios et al., Phys. Rev. B 66, 035322 (2002).

[2] D. Jacob, J. Fernández-Rossier and J. J. Palacios, Phys. Rev. B 73,
075429 (2006).

[3] D. Jacob, PhD thesis 2007, Universidad de Alicante; arXiv:0712.1383.

[4] D. Jacob, J. Fernández-Rossier and J. J. Palacios, Phys. Rev. B 77,
165412 (2006).

[5] D. Jacob, K. Haule and G. Kotliar, Phys. Rev. Lett. 103, 016803 (2009).

[6] D. Jacob and J. J. Palacios, in preparation (2010).

16


