Computing Molecular Vibrations with ASAP

Diverse applications in various scientific fields, ranging from chemistry and physics to materials science and biology:

ASAP provides an user-friendly workflow for studying molecular vibrations,

Input:

- Geometric structure

Output:

_

- Vibration modes
 - Density of vibration modes

- SPECTROSCOPY. Interpreting spectroscopic techniques (such as IR and Raman).
- CATALYSIS. Understanding the vibrational modes of reactants, intermediates and products is crucial in studying catalytic reactions.
- DRUG DESIGN. Understanding the vibrational modes helps in predicting bioactivity, drug-receptor interactions and the stability of drug compounds.
 - BIOCHEMISTRY. Providing insights into molecular vibrations involved in biological processes.

Method: Finite difference approximation of the Hessian matrix.

Case Study: Designing molecular nanosensors

Developing high-resolution molecular biosensors from an enhanced infrared absorption spectrum* (Multiscale Approach)

Simulation of the vibrational spectra for the conformational states of the target proteins (DFT with ASAP)
Metallic antenna design. The geometric dimension of the antennas is defined through calculations of the electromagnetic response of the nanostructures (finite element method with COMSOL).
Antenna fabrication design and characterization

Schematic representation of the set up used to study the electromagnetic response of the antenna in the presence of the target protein. It is considered that the antenna is interacting with a distribution of proteins representing a conformal layer. (Figure provided by Mario Zapata -Materials Physics Center-.

*Project funded by The Provincial Council of Gipuzkoa, call "Gipuzkoa Quantum-2022" / Project partners: Atten2 Advanced Monitoring Technologies, Tekniker and Simune.

The project results are confidencial.

The following slides provide simulations of the vibrational spectra for the selected reference molecule in this study: Formamide (CH₃NO)

www.simuneatomistics.com

Case Study: Designing molecular nanosensors

Identification of the frequencies that characterize the protein Formamide (CH₃NO) (reference molecule)

ASAP¹ constructed ball-and-stick model representation of the atomistic structure of formamide (CH₃NO).

^{1.} ASAP (Atomistic Simulation Advanced Platform) https://www.simuneatomistics.com/services/asap-software/ ASAP analysis window showing the computed absorption frequencies of CH₃NO (in vacuum).

Density Modes		Vibration mode	Energy (eV)	Energy (cm ⁻¹)	
	5	00004	0.005084	41.001	
	6	00005	0.006166	49.730	ZPVE = 1.16378 (eV)
	7	00006	0.009713	78.342	1
	8	00007	0.067328	543.036	1
	9	00008	0.075226	606.736	
	10	00009	0.120741	973.841	1
	11	00010	0.122150	985.209	1
	12	00011	0.147359	1188.534	
	13	00012	0.170777	1377.406	
	14	00013	0.188393	1519.496	Magnitude (K) 300,00
	15	00014	0.217183	1751.700	Forces scale 1309,59
	16	00015	0.351668	2836.390	Set scale manually 🗹
	17	00016	0.413834	3337.794	Number of images 30
	18	00017	0.431945	3483.870	View animation in 3D editor

The results are in good agreement with the frequencies obtained by Sugawara et al.² using Fourier-transform infrared spectroscopy. ²Sugawara, Y.; Hamada, Y. y Tsuboi, M., Vibration-rotation Spectra of Formamides, Bulletin of the Chemical Society of Japan, 56, 1045-1050 (1983).

www.simuneatomistics.com

ASAP analysis window showing the density of vibrational modes of CH₃NO (in vacuum)

The calculations were repeated in water solvent (implicit model). We observe that the C=O amide peak decreases by 48.1 cm^{-1} .

ASAP allows to visualise the animation of the selected vibrational mode

CONCLUSIONS

ASAP/SIESTA provides an user-friendly workflow for the exploration of molecular vibrations.

Formamide (CH_3NO) was chosen as the reference molecule, serving as a benchmark for method precision calibration. Our investigation seamlessly extended to a target protein (*confidential*).

This study provides crucial guidelines for the strategic design of nanoscale antennas. Antennas are engineered to enable frequency coupling between molecular vibrations and the dipolar resonance of the antennas.