Coupling of individual quantum emitters to channel plasmons
Motivation of the modeling
One of the main challenges in developing future nanoscale quantum photonic circuits is to manage combining on a single chip a single photon source, waveguides,
modulators and detectors. An important milestone towards this ultimate goal is the deterministic coupling of a single quantum emitter to an integrated waveguide.
Achievements of the model
We first used numerical simulations to model the coupling between a quantum emitter and the V-groove plasmonic channel. Once an optimal theoretical configuration was identified, the experimental team used state-of-the-art techniques to assemble the structure using a single nitrogen vacancy centre, a single quantum emitter present in diamond, coupled to the channel plasmons supported by a V-groove channel. The observations obtained from the experiment revealed
efficient coupling of the NV centre emission to the propagating modes of the V-groove, in accordance with the theoretical predictions postulated by the theoretical team.
Model system/Software
Electromagnetic calculations were performed using a Finite Element Method as implemented in the COMSOL multiphysics tool.
The following key information was provided by the numerical simulations:
- Optimum geometry for the V-groove (aperture angle and depth) for carrying channel plasmons at the emission frequency of the quantum emitter, i.e., nitrogen vacancy.
- Optimum location of the nitrogen vacancy inside the V-groove for which the coupling with the channel plasmon supported the V-groove is maximum.
Francisco J. García Vidal, part of the SIMUNE´s board of experts is one of the authors of this work.